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Abstract 

The article analyzes how controlling for differences in land types (defined by position on 

a low scale toposequence) affects estimates of farm technical efficiency for rice farms in 

eastern India.  Contrasting previous research, we find that farms are considerably more 

technically efficient when efficiency estimates are carried out at the plot level and control 

for plot characteristics rather than at the farm level without such controls. Estimates show 

farms cultivating modern varieties are technically efficient, and plots planted with 

traditional varieties on less productive lands (upland and mid-upland) operate close to the 

production frontier. Significant technical inefficiency is found on more productive lands 

(medium and lowland plots) planted with traditional rice varieties. The finding that these 

smallholder rain-fed rice farms are efficient cultivators on some plots contrasts with 

previous findings of farm-level inefficiency (i.e., rejects overarching explanations linked 

to farm operator ignorance or lack of motivation) and suggests more complex 

explanations are required to address the inefficiency that is present.  
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1. Introduction 

The diffusion and adoption of green revolution technologies for rice and wheat has 

proceeded slowly in two extensive agricultural regions in India: the dry semi-arid tropics 

and the eastern India’s rice-growing region (Walker and Ryan 1990). This article focuses 

on small-scale rice farmers in the Chhotanagpur Plateau in eastern India, an area 

characterized by its high poverty incidence and large share of households with scheduled 

tribe ethnic backgrounds, low productivity in largely rain-fed agriculture, and an 

environmentally degraded landscape with an undulating topography.  

Among the crucial questions facing policy makers in eastern India is: what should 

investment priorities be in efforts to improve the agricultural productivity of small farms, 

and through this, the living standards of impoverished households that derive a 

significant share of their income from agriculture? We address this question by 

estimating the degree of technical efficiency among a sample of farm-households in 

eastern India.  For example, better understanding of the local farming system of farm 

efficiency in rice production—the main food staple and dominant crop in the area—and 

of the farm characteristics associated with greater or lesser technical efficiency can help 

in the formulation of agricultural development policy for eastern India. A finding that 

there is substantial technical inefficiency would suggest directing public investments 

toward measures for improving technical efficiency would be expected to yield high 
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short-term payoffs. Policy interventions such as farmer education, agricultural extension 

and land tenure reforms have been suggested in the literature as policy mechanisms for 

improving farm efficiency1; however, how best to improve technical efficiency in the 

study area remains an empirical issue to be investigated and cannot be fully addressed by 

this study. On the other hand, if these small farm households are found to be ‘poor but 

(technically) efficient,’ à la Schultz (1964), then public investments should be directed 

toward efforts in shifting the farmers’ production possibility frontier. Such efforts could 

include investments in research and development of new technologies but could also 

include measures for facilitating adoption of new technologies and improving farmer 

technical efficiency in utilizing new technologies since development and introduction of 

new technology may not necessarily lead to their adoption or swift learning in reaching 

the new frontier achieved through the introduction of new technology. 

There is a large literature estimating technical efficiency in farm production in 

India and elsewhere, which has generally found significant technical inefficiency among 

farmers (e.g., Kalirajan, 1981 and 1982, also see Battese 1992, for a survey).
2
 However, 

relatively little attention has been paid to the possibility that lack of proper control for 

subtle differences in environmental factors, including land characteristics, that have the 

potential to alter findings regarding farm inefficiency—and  through this—policy  

 

                                                 
1
 For example, Singh, et al., (2002, p. 25). 

2
 Bagi (1982) and Battese and Coelli (1992), on the other hand, find relatively high technical efficiency of 

smallholder farms in India.  
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conclusions regarding the appropriate focus in rural development efforts in the area.
3
 

Among such potential environmental factors, we focus on the importance of controlling 

for the effect of microtopography and associated differences in land suitability for 

agriculture on farm technical efficiency estimates.  One of the main findings from our 

estimates is that small-scale rice farmers in eastern India appear to be considerably more 

technically efficient in rice production than indicated by farm-level estimates that fail to 

control for farm plot location on the microtopography. 

 The rest of the article is organized as follows. Section 2 discusses some of the 

major characteristics of the poor rice farmers in the study area in eastern India. Section 3 

outlines our empirical strategy for testing the sensitivity of the analysis and introduces 

our empirical model. Section 4 presents estimation results. Section 5 considers policy 

implications of findings and offers some final observations.  

2. Characteristics of the study area and data set
4
 

Following the policy reforms of the early 1990s, the Indian economy has displayed 

renewed dynamism in terms of its growth and achievements in poverty reduction. 

However, recent research has shown that not all regions of the country have benefited 

from this improved economic performance and that large variation exists within India in 

 

                                                 
3 
A notable exception is a recent study by Sherlund, et al. (2002), which shows that failure to control for the 

effect of differences in the environmental characteristics of farm (e.g., climate, pests infestation) can lead to 

significant overestimation of the degree of technical inefficiency based on analysis of farm survey data 

from Cote d’Ivoire. Coelli et al. (1999) report similar findings in their analysis of the international airline 

industry while applying a more general approach. 
4
 This section draws heavily on Banik et al. (2004). 
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terms of the rate of income growth and extent of poverty reduction successes (e. g., Datt 

and Ravallion, 2002). This follows an earlier post-independence history in the country in 

which green revolution technologies for wheat and rice cultivation enabled marked 

increases in agricultural productivity in many agricultural regions of the country in the 

1970s and 1980s, but largely bypassed two of the country’s extensive agricultural 

regions: the semi-arid tropics and eastern India’s rainfed rice-growing region (Walker 

and Ryan, 1990). Thanks to the intensive village level studies and longitudinal household 

surveys carried out by ICRISAT, our knowledge of the former area is substantial. In 

contrast, the eastern rain-fed rice region has been the subject of relatively little 

quantitative analysis.  

 Our study area lies on the Chhotanagpur Plateau, which is part of the so-called 

‘tribal belt’ in eastern India5. The data analyzed in this study was collected jointly by the 

International Rice Research Institute (IRRI) and Indian Statistical Institute (ISI) in the 

1998-99 crop season. The survey sample covered two neighboring districts, Giridih and 

Purulia, in the states of Jharkhand (a part of Bihar state prior to 2000) and West Bengal, 

respectively. The incidence of poverty among rural households in the area has been 

estimated to be among the highest in India. Statewide headcount poverty ratios in Bihar 

and West Bengal were the second and third highest in 1987-88 and second and fifth 

highest in 1999, respectively (Deaton, 2001). Based on the Planning Commission’s 

official poverty line for 1999, 60% of sampled households were poor according to 

 

                                                 
5
 The term ‘tribal belt’ refers to a concentration of districts that run in a band across central India that have 

high proportions of their populations from Scheduled Tribe backgrounds 
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income estimates based on our survey data
6
 and the average years of schooling of 

household heads was only 3.6 years.  

A total of 541 households were selected for the survey based on a stratified 

random sample of households in eight villages in each district. In each village, roughly 35 

households were randomly selected from Census lists across five landholding groups 

including landless households.  The survey questionnaire captured a host of economic 

and agricultural characteristics of the households and their farms, but was particularly 

focused on capturing information on agricultural production activities at the plot level. 

Our empirical analysis utilizes rice production data from 1,089 plot-level observations 

(operated by 470 farm households) during the Kharif season (i.e., the monsoon season 

which generally runs from June to November/December). Table 1 presents sample 

averages and variances for the key variables used in our production estimates. 

 Agriculture in the area is largely oriented to rice cultivation for subsistence.
7
 Our 

sample farms are predominantly small farms, and large-scale commercial farms are 

absent from the area. The maximum size of the farm operated by our sample households 

was 15 acres (6.1 hectares) and the average farm size was only 2.2 acres (0.9 hectares).  

This is the result of past land reform efforts that placed limits on the amount of land that 

could be owned and the division of family landholdings through inheritance across 

generations. Most sample farms relied on traditional cultivation techniques in their rice 

 

                                                 
6
 This poverty incidence was calculated based on estimates of gross household income, and the figure 

would likely be much higher if precise estimates of net household income were available. 
7
 Only 21% of the sample households reported selling of rice during the survey year.  
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production. The rate of adoption of modern rice varieties (MVs) was relatively low (see 

below), and the use of agricultural machinery, such as tractors and power tillers, was 

nearly nonexistent among sample farms.  

 One significant feature of the agricultural production environment in the study 

area is the area’s undulating topography in a highly dissected landscape. This 

characteristic gives rise to low-scale variations in terrain, soil, and water conditions that 

influence the kinds of crops that can be grown, the time windows for cropping, and 

feasible cropping systems across plots lying at different levels of the toposequence. Local 

farmers typically distinguish four different land types according to the land’s position on 

the microtopography: upland, mid-upland, medium land, and lowland. Going from the 

upland plots to the lowland plots, soil analysis by ISI reveals a trend of increasing soil 

fertility, consistent with farmers’ perceptions of the soil quality along the toposequence. 

Table 2 summarizes the results of soil analysis from one of the surveyed villages and 

shows the pattern of increasing chemical nutrients across samples drawn from lower 

levels of the terrace.
8
 Soil nutrient characteristics highlight the importance of relatively 

small differences in elevation across adjacent plots in defining plot characteristics (e.g., 

moisture and nutrient holding capacity, vulnerability to erosion).  

Farmers have adapted to the local topography by adjusting cropping patterns 

(particularly rice varieties cultivated) and crop management practices according to plot 

land type. Upland plots are typically planted with short duration (85-90 days), drought-

 

                                                 
8
 At the same time, however, lowlands sometimes suffer from excessive water. 
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tolerant TVs of rice or traditional minor millets that generally provide low yields. Mid-

upland plots are typically planted with medium-duration TVs, while medium land plots—

where soil moisture is available for a longer period than on the higher terraces—long-

duration TVs of rice are most widely planted. At the bottom of toposequence—on 

lowland plots—farms typically plant long-duration rice TVs with low inputs of manure or 

MVs of rice.  Planting of traditional varieties predominated, but MV rice is also 

cultivated (i.e., the share of land area planted with MVs was 21% on lowland and 24% on 

medium land)—mainly on medium land and lowland plots where the ambient moisture 

on plots is higher so soils are better suited to MVs which tend to be more sensitive to 

water availability.  Average paddy yields differed significantly across land types, and 

yields generally increase as one moves down the toposequence.  Rice yields averaged 2.1 

tons per hectare on upland plots compared to an average yield of 3.3 tons per hectare on 

lowland plots, according to our survey.  Considered together, these characteristics suggest 

that disaggregating farm technical efficiency estimates across plots of the difference land 

types and controlling for other low scale (i.e., plot level) differences in environmental 

conditions can strongly influence estimates of farm technical efficiency.  

3. Methodology for testing sensitivity of technical efficiency estimates  

We examine the technical efficiency of our sample farmers by estimating stochastic 

frontier production functions (SFPFs), as pioneered by Aigner et al. (1977, and Meeusen 

and van den Broeck (1997). In particular, the analysis seeks to evaluate how including 

details about the microtopographic position affects inferences that can be made regarding 
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small farmer technical efficiency. To do this, we estimate SFPFs at different levels of 

land aggregation and include different control variables and compare estimation results. 

SFPF estimation models take the general form:  

 lnYi = f(Xi, Zi; β) + Vi – Ui ,       (1) 

where f(.) defines the production frontier with i representing ith observation (either plot-

level or farm level, as detailed below). Yi is the total amount (in kilograms) of paddy 

produced, Xi is a vector of production inputs (land, seed, labor, and fertilizer), Zi is a 

vector of additional environmental control variables (i.e., irrigation availability on each 

plot and village dummy variables capturing institutional/environmental characteristics 

varying at the village level), and β is the vector of unknown parameters that characterize 

the production frontier. Vi represents random error (e.g., measurement error) and is 

assumed to be normally distributed with mean zero and variance σv
2
. Ui (>0) captures the 

non-negative component of the estimation residual and is interpreted as representing 

technical inefficiency.  

 It is standard practice in SFPF estimation for the production frontier f(.) to be 

parameterized as a Translog or Cobb-Douglas functional form. We initially estimate 

equation (1) as a Translog production frontier taking the form:  
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with βjk =βkj (k, j = 0, 1, …, K). We test whether Cobb-Douglas is an adequate 

specification by testing the joint significance of H0: βjk=0 for all j, k = 1, …, K. When 

estimates fail to reject the null hypothesis, we re-estimate the production frontier using a 

Cobb-Douglas specification.9  

 A variety of distributions have been proposed to characterize the technical 

inefficiency term Ui in the existing SFPF literature.10 While distributions that involve 

two-parameters can accommodate a wider range of possible distributional shapes, using 

these types of distributions comes at the cost of making parameter identification more 

difficult (see Ritter and Simar, 1997). Also, the existing literature has not clearly 

established the empirical significance of using more elaborate specifications of Ui.
11

 We 

initially experimented with alternative distributional assumptions including the 

exponential, half-normal, and truncated normal, and found that model identification was 

indeed difficult when the truncated normal distribution was used. The estimated mean of 

Ui—commonly referred to as parameter µ in the SFPF literature—had large standard 

errors and was not significantly different from zero. The general pattern of our results did 

not change across estimates that applied different distributional assumptions for Ui. 

Consequently, we focus discussion on the results based on the estimates that assumed Ui 

is distributed as a half-normal distribution (a relatively simple and widely applied 
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 The equation estimated in this case takes the form: lnYi = β0 + ∑
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10
 See Kumbhakar and Lovell (2000) for a comprehensive discussion of alternative distributional 

assumptions found in the literature.  
11

 For example, earlier research has shown that while the quantitative magnitudes of predicted firm-level 

technical efficiency are sensitive to such distributional assumptions, the ranking among observations based 

on estimated technical efficiency is not (Kumbhakar and Lovell, 2000). 
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distribution) with variance σu
2, which follows recommendations of Ritter and Simar 

(1997, p. 181), and Kumbhakar and Lovell (2000, p. 90).  Adopting one of the more 

common specifications applied in SFPF estimates has the additional advantage of making 

it easier to compare our results to earlier studies that used this specification.  This will 

make it easier to assess whether the results of earlier studies estimating production 

frontiers at the farm level could be biased by their failure to control for plot-level 

heterogeneity.  

 We test for technical inefficiency among survey farmers by examining the null 

hypothesis H0: σu
2=0 against the alternative hypothesis H1: σu

2>0. Coelli (1995) shows a 

one-sided generalized likelihood ratio test statistic is asymptotically distributed as a 

mixture of chi-square distributions with one degree of freedom.  Following Jondrow et al. 

(1982), and Battese and Coelli (1988), we then predict technical efficiency scores for 

individual plots (TEi) as TEi = exp(-Ui), conditional on the observed composite error (Vi - 

Ui). 

 Starting with farm level and moving to plot-level estimates while adding more 

variables to estimation models to control for the effect of other environmental conditions, 

we examine how the disaggregation and the addition of environmental variables 

influence inferences about the extent of farm technical efficiency. Specifically, we 

estimate production frontiers at three levels of aggregation:  

1. Farm level where the output and inputs are aggregated across all plots operated 

by the household. 
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2.  Plot level analysis where plots of different land types are not distinguished but 

pooled together, and   

3. Individual plot level analysis estimated separately for each land type.  

As discussed earlier, farmers typically plant distinct rice varieties on different land types, 

so we estimate separate production frontiers for each land type.  In estimating at each 

level of the aggregation, we use two model specifications. One specification defines 

production to depend only upon the level of production inputs (i.e., land area, labor, 

fertilizer and seed), and the other adds variables to capture the effect of irrigation 

availability (a dummy variable taking the value one if the plot is irrigated) and the 

village-level dummy variables. In addition, estimates at the pooled-plot and the plot 

levels (i.e., for each land type) are carried out separately for plots cultivated with MVs 

and TVs.  

4. Estimation results 

The estimated quadratic terms of the Translog production functions are generally 

statistically significant, so the Translog specification is used in all but one case
12

  The 

quadratic terms were not significantly different from zero in the estimate on  medium-

land plots so a Cobb-Douglas form was used in this instance.  
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 In addition, all the models were statistically significant (P-value = 0.00) according to the Wald chi-square 

tests. 
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4.1. Estimated production frontier parameters  

Table 3 summarizes the means and standard deviations of the estimated  

elasticities of output with respect to the inputs from our production frontier estimates. 

Estimates show that these elasticities vary significantly across different land types in their 

pooled and individual plots level estimates, which suggests that the estimated technology 

parameters that characterize production frontiers are sensitive to the microtopographic 

position of the farm plot.
 13

  This is expected since farms plant different rice varieties and 

apply different inputs on plots of different land types, and is consistent with the general 

conclusions of Sherlund et al. (2002). Elasticities also varied—although less 

consistently—with the inclusion of additional control variables (i.e., irrigation availability 

and village dummy variables).
14

 

4.2. Technical efficiency estimates 

Table 4 summarizes the results of technical efficiency estimates, reporting the 

statistical significance and predicted technical efficiency scores under the various model 

specifications.  Results generally show that technical efficiency estimates carried out at 

the farm level differ significantly from estimates made at more disaggregated levels (i.e., 

 

                                                 
13

 While the relatively small (and occasionally negative) elasticity of labor is somewhat puzzling, it is 

consistent with previous findings from rice farmers in Bangladesh (Sharif and Dar, 1996) and wheat 

farmers in Pakistan (Battese and Broca, 1997).  A plausible explanation for the negative coefficients 

estimated for labor input in some of the specifications is that labor input is pre-determined to a much lesser 

extent than other inputs (i.e., decisions regarding the size of plot to cultivate and the amount of seed to 

apply must be made at the start of the planting season) and increased application of labor is a common 

response to crop management problems (e.g., drought, or weed/insect infestations). 
14

 Coefficient estimates are not reported due to space constraints, but are available from the corresponding 

author. 
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farm production across land types and plots). Our estimates indicate that there is 

significant technical inefficiency among the rice farms at the household aggregate level—

a result that is consistent with earlier studies. As shown in the first column of Table 4, the 

null hypothesis that there is no technical inefficiency (i.e., σu equals zero) is strongly 

rejected (probability value of less than 0.01 in farm-wide estimates). Average technical 

efficiency scores are 0.75 (for the specifications with production inputs only) and 0.8 (for 

specifications with additional irrigation and village heterogeneity controls). Estimated 

technical efficiency scores are roughly comparable to those found in the earlier estimates 

base on data from developing country settings (Battese, 1992).
15

 The analysis at the 

aggregate farm level suggests that irrigation availability and variables capturing village-

level heterogeneity have relatively little effect on farm technical efficiency, a result 

which sharply contrasts that of Sherlund et al. (2002).  

 Estimates of farm technical efficiency made at the more disaggregated plot-level 

yields results that change the inferences that can be drawn regarding farm technical 

efficiency, providing a more complex pattern of results.  Plots planted with MVs are 

shown to be efficient (i.e., estimates fail to reject the null hypothesis of no technical 

inefficiency) and point estimates of the ratio of standard deviations λ—σu/σv : an 

indicator of the relative contributions of u and v to the composite error term—are close to 

zero (See column two on Table 4), and the average predicted value of technical efficiency 

is close to one. The finding that rice cultivation using MVs among sampled farms in 

 

                                                 
15

 Caution is warranted in interpreting these results, however, because comparisons of efficiency scores say 

nothing about relative efficiency across samples of farmers (Coelli et al., 1998, p. 247).  
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eastern India is operating near the production frontier sharply contrasts with results of 

earlier studies.  Kalirajan (1982) and Sharif and Dar (1996) found significant inefficiency 

among rice farms planting MVs, however, these earlier studies relied on data from 

subsistence oriented rice farms covering different years and geographical areas than our 

study.
16

 Another possible explanation for the different results is that farm technical 

inefficiency in the early stage of MV introduction has been overcome as farmers have 

learned and adapted standard practices over the years following MV introduction.  

 While farms cultivating rice plots planted with MVs are found to be technically 

efficient, the equivalent estimates show plots planted with TVs display significant 

technical inefficiency.  The mean predicted technical efficiency scores range from 0.75 to 

0.79, as shown in the third column of Table 4. However, when estimates are carried out 

separately for plots of each land type, estimates find statistically significant technical 

inefficiency estimates for medium land and lowland plots, but not for upland or mid-

upland plots. The model with controls for the availability of irrigation on the plot and 

village effects gives point estimates of λ at 2.5 on lowland plots and 3.4 on medium land 

plots, which suggests that the technical inefficiency term (Ui) dominates the composite 

error term (Vi-Ui).  

In the case of upland and mid-upland plots, the null hypothesis of no technical 

efficiency is rejected in the basic model (i.e., without irrigation and village-level dummy 

 

                                                 
16

 The data used in these studies came from Tamil Nadu State in the late 1970s and Bangladesh in the mid-

1980s, respectively.  
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variables).  Once irrigation and village dummy variables are introduced, however, the 

null hypothesis is no longer rejected, and the point estimates of λ become very small (less 

than 0.1). Accordingly, adding indicators of irrigation and village level heterogeneity thus 

significantly influences inferences regarding the technical efficiency of rice cultivation on 

upland and mid-upland plots planted with TVs.
17

 In contrast, adding environmental 

controls does not significantly influence inferences regarding technical efficiency on 

medium land and lowland TV plots.  

 To summarize, we find that technical inefficiency is prevalent among the more 

fertile plots lying in the lower portions along toposequence (i.e., medium-land and 

lowland plots) while systematic technical inefficiency is not present on plots in less 

favorable upper portions of the terrace toposequence (upland and mid-upland plots). Our 

estimates for plots planted with modern rice varieties (cultivated mainly on medium land 

and lowland posts) also failed to find systematic technical inefficiency across surveyed 

smallholder farms.  

 A likely explanation for the more complex picture that emerges from plot-level 

estimates—in which smallholder farms display efficiency in cultivating TVs on middle 

and upper terrace plots but inefficiency on medium-land and lowland plots— is that this 

results from the more heterogeneous and uncertain agricultural conditions encountered on 

higher terraces. The water holding capacity and soil nutrient composition of upland and 

mid-upland plots appear to be relatively more heterogeneous than those of the lower 
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 This finding is in line with that of Sherlund et al. (2002). 
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terraces. In addition, the tendency for nutrients to be carried off plots on higher portions 

of the toposequence—particularly during heavy monsoon rains—and to be transferred to 

lower terraces, a process that is beyond farmers’ control, is likely to depend upon 

idiosyncratic characteristics of the local topography, and increase the homogeneity of 

medium land and lowland plots relative to upper terraces. As a result, the amount of 

production farms can garner from rice cultivated on upland and mid-upland plots tends to 

be more uncertain and appears to depend to a greater extent on stochastic environmental 

outcomes than is the case for output levels from lower terrace plots. This is suggested by 

the relatively small λ ( i.e., the random error component dominating the composite error 

term) in our upland and mid-upland plot estimates.  In contrast, the relatively more 

homogeneous and more stable water-holding capacity and nutrient characteristics of soils 

on lower portions of the toposequence appear to enable farm cultivation practices and 

management skills—rather than random factors—to determine yields on lower terrace 

plots.  The relatively larger estimates of λ obtained on estimates for lowland and middle 

land plots are consistent with such an explanation. Since we are estimating separate 

production frontiers for each land type, the levels of production frontiers are lower (i.e., 

yields are lower) for upper terraces than for lower terraces, but the distance of individual 

farms from the frontier tends to be dominated by stochastic soil conditions largely 

beyond farmers’ control.  As a result, rice plots on upper terraces appear to be operating 

more or less with the same level of technical efficiency (i.e., absence of significant 

technical inefficiency).  
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A practical implication of these findings is that it will likely be difficult to 

increase productivity on less favorable upper terraces without shifting the production 

frontier, while results also suggest there is potential to improve the technical efficiency of 

some farmers in rice cultivation on lower terrace plots.  Methodologically, these results 

indicate that aggregation of production inputs and outputs across individual plots to farm-

wide totals in SFPF estimates yields estimates that cause farms to appear  considerably 

less technically efficient than they actually are once explicit account is taken of the 

production effects of microtopography, irrigation availability, and village level 

characteristics by including these variables in plot level estimates.  

4.3. Are MV-adopters systematically more efficient than non-adopters? 

Because one might expect farms that are technically proficient in MV cultivation 

on medium-land and lowland plots (68% of the MV plots in our survey were on plots of 

these two land types) to be efficient in the production of all rice varieties on these plots, 

the finding that there is significant technical inefficiency on lower-terrace plots planted 

with TVs merits additional investigation.  One potential explanation is that more 

technically efficient farms adopted MVs while farms that are less technically efficient 

were less likely to adopt MVs.  In other words, unobserved farmer characteristics 

correlated with greater efficiency may also be correlated with MV adoption. Alternatively, 

this could result if the same farmers found to be technically efficient in MV cultivation 

on some lower terrace plots are in fact less technically efficient in cultivating TVs on 

other lower terrace plots.  Farms typically cultivate rice on plots of more than one land 
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type, and a substantial number of plots operated by ‘MV adopters’ (defined here as those 

who cultivate MV on at least one plot) are planted with TVs.  Only 9% of the MV-

adopters planted MVs on all of their farm’s plots (91% cultivated MVs on some plots and 

TVs on others).  

We explore whether MV adopters are technically more efficient than non-

adopters in their cultivation of TVs on lower terrace plots in two ways. First, we examine 

whether the predicted technical efficiency scores (TEi) for TV cultivation are 

significantly different between the MV-adopter and non-adopter groups according to our 

SFPF estimates (from the full model) reported in Table 4. Second, we examine whether 

being an MV adopter has a significantly negative association with technical inefficiency 

scores by re-estimating the same SFPF for each land type as reported in Table 4 except 

that we now specify the variance of the technical efficiency term Ui to be a function of an 

‘MV adopter dummy’ (a dummy variable taking value one if the farm operator has at 

least one plot planted with MVs).   

As reported in Table 4 (in the last two rows), the average technical efficiency 

scores are similar across MV adopters and non-adopters.  Scores are slightly higher 

among MV-adopters on medium land plots (and when plots of all land types are pooled), 

but the pattern is reversed on lowland plots. Accordingly, our estimates provide weak 

evidence of higher technical efficiency among MV adopters on medium land plots, but 

estimates do not display a consistent efficiency gap between the MV-adopters and the 

non-adopters in TV cultivation.  
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Our second approach to examine whether there are systematic differences in 

technical efficiency between MV-adopters and non-adopters is to introduce an MV-

adopter dummy as a covariate in the determinants of technical inefficiency term (Ui); we 

assume that σ2ui = exp(γγγγ'Zi), where the Zi vector consists of an intercept and the MV 

adopter dummy. These estimates reveal that the coefficient on the MV adopter dummy is 

not significantly different from zero in any of the specifications
18

, so provide further 

evidence in support of the conjecture that MV-adopters are not any more technically 

efficient than non-adopters in their cultivation of TVs on lower terraces.  Had MV-

adopters been found to be more technically proficient in TV cultivation on medium-land 

and lowland plots, it would have supported the hypothesis that unobserved farmer 

heterogeneity such as technical know-how and motivation explained the different levels 

of technical efficiency on MV plots and the TV plots on lower terraces. To summarize, 

our results suggest that surveyed farms exhibit varying levels of technical proficiency 

across plots of different land-types planted with TVs, and across plots of the same land 

types (i.e., medium land and lowland) planted with MVs and TVs and that this does not 

appear to be explained by selection bias.  

4.4. MV vs. TV cultivation on lower terraces 

If selection bias cannot explain the somewhat paradoxical finding that the same 

farms displayed different degrees of technical efficiency between lower terrace plots 
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 These estimation results are not reported here in order to conserve space, but are available from the 

authors upon request. 
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cultivated with MVs and TVs, then what can explain this result?  While answering this 

question fully with cross-sectional data is difficult,19 we can offer a few possible 

explanations. One possibility is that, by the late 1990s, MV rice cultivation technology 

had become well understood and homogeneously applied by adopting farms while the TV 

farming technology remained more idiosyncratic and continued to depend significantly 

on farm experience.  As we see below, we find evidence that accumulated farm 

experience (proxied by the age of the household head) positively affects technical 

efficiency in TV cultivation, suggesting that learning from experiences plays an 

important role in raising farm efficiency in TV cultivation.  

In addition, literature from agronomy (as well as technicalities involved in SFPF 

estimation) offer additional explanations for the different levels of technical efficiency 

observed for cultivation of MVs and TVs on lower terraces.  As noted earlier, water 

availability on lower terrace plots is generally more favorable than on upper terrace plots, 

but due to the paucity of water management infrastructure in the study area it still  

fluctuates with rainfall.
20

  The greater sensitivity of MV yields to water availability 

means that yields from cultivation of TVs on lower terrace plots are more certain than 

yields from MV cultivation.
21

 Accordingly, the level of production from MVs cultivated 

on medium and lowland plots likely depends more on stochastic environmental outcomes 

 

                                                 
19

 Construction of a panel dataset is currently underway, and with such data we will be able to investigate 

both the farms’ decision to adopt MVs and their technical efficiency at the plot-level with statistical control 

of the effects of unobserved plot-level heterogeneity. 
20

 In the case of lowland, excess water, as well as the shortage of water, can be a problem depending on the 

fluctuations in the water table level. 
21

 This characteristic of rice cultivation in the study area is detailed in Maiti and Bagchi (1993). 
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(rather than farm efficiency) than production outcomes from TV cultivation.  Our SFPF 

estimates showed estimated standard deviations of the random error terms (i.e., σv ) for 

the plots planted with MVs average roughly 0.3 compared with estimates in the range of 

0.1 to 0.2 for medium-land and lowland plots cultivated with TVs.  The greater variance 

in yields for plots cultivated with MVs makes the estimated λ small relative to λ 

estimated for plots cultivated with TVs (see Table 4).  This explanation somewhat 

parallels that offered earlier in the paper to explain the different efficiency levels 

observed in TV cultivation on upper and lower terrace plots.   

4.5. Why are the MV adoption rates so low? 

While these offer possible explanations for the difference in the estimated 

technical efficiency between lower terrace plots cultivated with MVs and TVs, questions 

remain concerning: (1) the low rate of MV adoption, and (2) the possible sources of the 

technical inefficiency found for lower terrace TV crops.  Again, fully addressing these 

questions would require richer data than is currently available.  Nonetheless, we offer 

some preliminary conjectures loosely supported by evidence from the cross-sectional data.  

It is puzzling that the MV adoption rate remains low so many years after MVs 

were first introduced.  Difficulty with learning proper techniques for cultivating MVs 

would not appear to offer a viable explanation since farms that have adopted MV appear 

to be operating near the production frontier.  One possible explanation is that severe cash 

constraints among surveyed farm households force credit rationing and greater reliance 

on non-purchased agricultural inputs.  Modern inputs required for MV cultivation (e.g., 



 

23 

chemical fertilizer) are typically financed with cash income from non-farm sources since 

credit markets appear to be extremely limited in the study area.22  Our survey data 

indicate, for example, that the average non-agricultural income of households adopting 

MVs is twice that of non-adopting households (Rupees (Rs.) 3,800 compared to Rs. 

1,800), which is consistent with MVs adoption being constrained by the lack of 

opportunities to earn cash (and the poorly developed market for agricultural credit) to 

finance the purchase of modern inputs required for MV cultivation.  In addition, given the 

high level of poverty in the area, and the relatively high sensitivity of yields to water 

availability, the low level of MV adoption and cultivation of MVs on only a portion of 

farm land by adopters can be understood as a risk mitigating strategy.  

Another possibility is that the MVs currently available in the study area are poorly 

suited to the environmental conditions of the East Indian plateau, and only the most 

favorable lower terrace plots–on which water management is possible–are favorable to 

MV cultivation.  Unfortunately, small variations in land quality across lowland plots 

cannot be directly observed in our dataset.  However, if this were the case, then either 

technical innovation to develop (and introduce) new drought tolerant MVs or investments 

in infrastructure to better manage water on farm plots would be necessary to enable study 

area farms to adopt high yielding rice varieties on a larger scale. 

4.6. Potential sources of technical inefficiency in TV cultivation 

 

                                                 
22

 The lack of agricultural credit is found in the results of the survey carried out for this study and has been 

documented in Ramachandran and Swaminathan (2001). 
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Returning to the second question of why is it that some farmers are technically 

more efficient than others in TV cultivation on lower terrace plots: We explore this 

question by re-estimating stochastic frontiers with the added assumption that the variance 

of the technical inefficiency term Ui is a function of a set of potential determinants of 

inefficiency (i.e., σui
2
 = exp(γγγγ'Zi)).  The list of potential determinants of technical 

inefficiency (Zi) measured in our dataset is rather limited, however, largely consisting of 

household-level—rather than plot-level—variables (e.g., years of schooling of the 

household member with highest educational attainment, age of the household head as a 

proxy for farming experience, farm distance from local markets as indicated by travel 

time to the nearest local market, total land area operated by the household, and the share 

farm landholding of each land type).  

The results of this analysis are summarized in Table 5.
23

  We find that greater 

distance from markets has a positive and statistically significant effect on technical 

inefficiency under all estimation model specifications.  If distance was negatively 

correlated with ease in acquiring information on new agricultural techniques (for example, 

if greater distance was associated with fewer visits from agricultural extension agents or 

commercial traders who transmit information on new technologies), then relatively 

remote farms would be expected to display lower technical efficiency.  Distance from 

markets also increases transactions costs in purchasing agricultural inputs (such as 

fertilizer) and technically inefficient use of inputs could result from the relative over-

 

                                                 
23

 Estimated production frontier parameters are not reported here in order to conserve space, but are 

available from the corresponding author upon request. 
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reliance on non-market inputs such as family labor, farm manure, and seed stored from 

prior year’s harvest due to the higher transaction costs, and thus explain the positive 

relationship between farm distance from markets and technical inefficiency. 

Farm household educational attainment has a significant positive association with 

technical efficiency.24 Greater schooling could potentially enhance farm technical 

efficiency either through acquisition of knowledge relevant to agriculture (taught directly 

at school or through outside sources such as reading newspaper, which is made possible 

by literacy education) or through enhancing household capacity to learn from farming 

experiences. Following Rosenzweig (1995), we can use a target-input model to examine 

the empirical relationship between schooling and farm productivity (in particular, 

whether schooling and experience are substitutes or compliments) by including an 

interaction term between schooling and experience as a determinant of the technical 

inefficiency term.  As shown in Table 5 (column 4), the estimation coefficient on the 

interaction term suggests that schooling and experiences are substitutes rather than 

complements on medium-land (but not lowland) plots. This can be interpreted to suggest 

that schooling increases acquisition of new information but does not enhance the 

efficiency of learning from experience, and that the returns to schooling tend to decline as 

households accumulate experience.
25

  

We also find that farms operating on lands with a higher proportion of lower 

 

                                                 
24

 Initially we also have used the schooling of the household head instead of the maximum schooling, but it 

was not significant.  So it is the maximum education rather than the head’s education that appears to matter. 
25

 See Rosenzweig (1995) for the logic behind this interpretation of the interaction term. 
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terrace plots are more technically efficient in some estimates—although the level of 

statistical significance is lower—,and that farm size does not have a statistically 

significant effect on farm technical efficiency. Considered together, this analysis provides 

some additional evidence that the distinct characteristics of plots influence farming 

outcomes. However, without stronger data (e.g., panel data or additional variables 

measured at the plot rather than the household level), we are unable to rule out the 

possibility that yet unobserved heterogeneity across plots of a given land type might be 

driving some of our results.  

 

5. Policy implications 

 A number of policy implications can be drawn from these findings. One key 

finding concerns the importance of low scale differences in topography in driving land 

use and production outcomes in our study area.  Efficiency estimates carried out at the 

farm level suggest farms are technically inefficient, but more disaggregated estimates 

reveal a more complex picture of farm technical capacity—with farms displaying 

technical efficiency on plots of certain land types planted with TVs and plots of other 

land types planted with MVs.  The contrasting results in technical efficiency estimates 

between the upper and the lower terraces (as well as between the MV- and TV-planted 

plots) suggest that distinct policy interventions for increasing productivity of different 

land types are likely to be called for.  For upland and mid-upland, there seems to be 

relatively little room for improving technical efficiency under the current technology, and 
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existing MVs are unlikely to be widely adopted due to unfavorable soil moisture 

conditions on these lands. Development and introduction of new technology—

particularly new rice varieties with higher tolerance to water stress (instead of improving 

technical efficiency based on the existing technology) is suggested for raising 

productivity in those land situations.  

Our finding that MV adoption levels remain low in the survey area despite the 

fact that MV adopters display technical proficiency in MV cultivation suggests  

addressing the constraints that prevent many poor farm households from adopting MV 

should be high on research and policy agendas in eastern India.  There are at least two 

possible explanations for the low rate of adoption among surveyed farms: 1) that farms 

are cash (credit) constrained; and 2) that land in the area that is well suited to cultivation 

of the currently available MVs is scarce.  Appropriate policy interventions would depend 

on which of these is true, but further study is needed to determine this as the present 

research is unable to distinguish these alternative explanations.  If local agricultural 

conditions constrain adoption, then development of new high yielding varieties with 

improved drought adoption tolerance may be desirable, and development and 

introduction of low cost water control technologies would hold promise of improving the 

MV adoption rate.  Alternatively, if the low rate of MV results from binding cash/credit 

constraints, then policy interventions addressing this aspect of market imperfection would 

be needed.  
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Our research also suggests there is potential for improving technical efficiency in 

TV cultivation on the medium land and lowland (e.g., technical extension to enable 

inefficient farms to produce closer to the production frontier).  Development and 

diffusion of sound crop management practices for rainfed TVs through agricultural 

research could also be promising for these plots. Our analysis also suggests that investing 

in infrastructure could reduce the gap in technical efficiency levels between remote areas 

and more accessible areas, as could improved access to schooling. However, given our 

findings that the observed technical inefficiency is not as extensive as it might first 

appear from more aggregate analysis, efforts at improvement of technical efficiency may 

have relatively limited impact in terms of improving farm productivity and food security 

in Eastern India.  

 

6. Conclusions  

Existing studies applying stochastic frontier production function estimation to examine 

technical efficiency of farms in the context of developing country agriculture have found 

widespread evidence of farm inefficiency. In contrast, we find that farm technical 

efficiency varies across farm plots distinguished by their position in a low-scale 

toposequence and by the rice variety (modern or traditional) cultivated. Analysis of farm 

technical efficiency at the disaggregated plot-level suggests that poor rice farming 

households in eastern India are considerably more technically efficient than they appear 

based on the aggregate farm-level analysis. Farms appear to be efficient in the cultivation 
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of some plots and inefficient in others—rather than being uniformly inefficient in farming.  

To understand why this is the case, analysis must consider the local environment and 

distinct cultivation practices applied in cultivation of rice on plots of different land types. 

Farm-wide analysis incorrectly attributes differences in output levels to farm 

mismanagement when more disaggregated analysis indicates technical shortcomings are 

due to small scale variations in soil quality and other environmental characteristics 

observable only at the plot level.  
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Table 1. Summary statistics for variables used in SFPF estimates  
 

Sample/Sub-Sample (sample size) 

                  Variable 

Sample 

mean 

Coefficient 

of variation 

Minimum 

value 

Maximum 

value 

     
All Kharif season rice plots planted with modern varieties (N=169) 

 production (kg.) 1,044.300 6.179 45.000 8,420.00 

 land (acre) 0.892 0.005 00.050 12.160 

 seed (kg.) 42.500 0.251 02.000 550.00 

 fertilizer (100 kg.) 2.803 0.017 00.000 19.800 

 labor (person-days) 65.780 0.389 06.000 368.00 

 upland land-type plot (0/1) 0.036 -- 00.000 1.00 

 mid-upland plot (0/1) 0.284 -- 00.000 1.00 

 medium land plot (0/1) 0.254 -- 00.000 1.00 

 lowland plot (0/1) 0.426 -- 00.000 1.00 

 irrigation available (0/1) 0.090 -- 00.000 1.00 

      
All Kharif season rice plots planted with traditional varieties (N=920

*
) 

 production (kg.) 907.600 1.174 30.000 12,592.00 

 land (acre)     0.940 1.055 0.0250        10.47 

 seed (kg.)   48.619 1.131 1.000      525.00 

 fertilizer (kg.)     2.260 1.343 0.000         36.00 

 labor (person-days)   74.484 0.986 3.000      823.00 

 upland land-type plot (0/1)     0.114 -- 0.000          1.00 

 mid-upland plot (0/1)     0.485 -- 0.000          1.00 

 medium land plot (0/1)     0.140 -- 0.000          1.00 

 lowland plot (0/1)     0.260 -- 0.000          1.00 

 irrigation available (0/1)     0.090 -- 0.000          1.00 

      Kharif season traditional variety rice plots on upland (N=105) 

 production (kg.) 471.300 4.489 40.000 1,645.000 

 land (acre)     0.726 0.007 0.030        4.000 

 seed (kg.)   36.340 0.346 2.000    140.000 

 fertilizer (kg.)     0.966 0.009 0.000        8.680 

 labor (person-days)   47.380 0.451 3.00    267.000 

 irrigation available (0/1)     0.048 -- 0 .0000        1.000 

      
Kharif season traditional variety rice plots on middle upland (N=446) 

 production (kg.) 848.000 1.901 30.000 7,350.000 

 land (acre)     0.972 0.002 0.025        9.000 

 seed (kg.)   50.128 0.112 1.000    420.000 

 fertilizer (kg.)     2.350 0.005 0.000      36.000 

 labor (person-days)   77.910 0.175 03.50    823.000 

 irrigation available (0/1)     0.100 -- 00.00        1.000 

      
Kharif season traditional variety rice plots on medium land (N=129) 

 production (kg.) 1,019.500 7.903 90.000 7,140.000 

 land (acre)        0.928 0.007 0.060        6.000 

 seed (kg.)      46.257 0.359 2.750    525.000 

 fertilizer (kg.)        2.473 0.019 0.000      27.000 

 labor (person-days)      77.054 0.597 6.000    430.000 

 irrigation available (0/1)        0.147 -- 0.00        1.000 

      Kharif season traditional variety rice plots on lowland (N=239) 

 production (kg.) 1,148.900 1.263 35.000 12,592.000 

 land (acre)        0.977 1.162   0.030        10.470 

 seed (kg.)      52.335 1.138   2.000      490.000 

 fertilizer (kg.)        2.546 1.223   0.000        20.000 

 labor (person-days)      78.192 0.961   3.500      498.000 

 irrigation available (0/1)        0.059 --     0.00           1.00 
*While the total number of plot-level observations with TV cultivation is 920, information on land type is missing in 

one observation. Thus the total plot-level observations with known land types are 919 (=105+446+129+239).   
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Table 2. Composition of nutrients across land types  

   defined by position on the toposequence 
  

Land type Number 

of samples 

Org. C 

(%) 

Ave. P 

(kg./ha) 

Ave. K 

(kg./ha) 

Total 

N (%) 

 

Upland 

 

3 0.38 12 84 0.03 

 

Mid-upland 

 

6 0.53 18 82 0.05 

 

Medium land 

 

6 0.56 21 267 0.05 

 

Lowland 

 

21 0.77 24 185 0.07 

Notes: C-Carbon, P-Potassium, K-Phosphorous, and N-Nitrogen. 

Source: Soil chemical analysis conducted at Indian Statistical Institute, Kolkata, India. 
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Table 3. Input elasticities and standard deviations from SFPF estimates  
 

Alternative plot/land-type disaggregation levels 

All plots pooled:  Land-type specific estimates: 

 

 

 

Production 

input Farm level 

Modern 

varieties 

(MV) only 

Traditional 

varieties 

(TV) only 

upland  

(TV only) 

mid-upland 

(TV only) 

medium 

land  

(TV only) 

lowland  

(TV only) 

 

(A) Minimum production function model with production inputs only: 

 

 

Land 

 

0.7088 

(0.134) 

0.4728 

(0.211) 

0.5787 

(0.183) 

0.2195 

(0.260) 

0.5782 

(0.170) 

0.8690 

(0.046) 

0.6363 

(0.156) 

 

Fertilizer 

 

0.0436 

(0.025) 

0.0646 

(0.054) 

0.0565 

(0.032) 

0.0749 

(0.174) 

0.0648 

(0.046) 

0.0069 

(0.012) 

0.0160 

( 0.034) 

 

Labor 

 

-0.0521 

(0.042) 

0.0155 

(0.114) 

0.0702 

(0.100) 

0.1182 

(0.182) 

0.0379 

(0.075) 

-0.0092 

(0.042) 

0.0889 

(0.094) 

 

Seed 

 

0.2646 

(0.095) 

0.3703 

(0.065) 

0.2580 

(0.105) 

0.4075 

(0.228) 

0.2726 

(0.178) 

0.0841 

(0.035) 

0.2320 

(0.143) 

 

(B) Full production function model with irrigation and village dummies: 

 

 

Land 

 

0.617 

(0.128) 

0.4374 

(0.238) 

0.5219 

(0.189) 

0.3067 

(0.256) 

0.4758 

(0.147) 

0.8556 

(0.041) 

0.5785 

(0.158) 

 

Fertilizer 

 

0.0354 

(0.026) 

0.0301 

(0.036) 

0.0511 

(0.037) 

0.0947 

(0.117) 

0.0630 

(0.0447) 

0.0083 

(0.011) 

0.004 

(0.032) 

 

Labor 

 

-0.0358 

(0.042) 

-0.0524 

(0.115) 

0.0482 

(0.088) 

0.1287 

(0.157) 

0.0349 

(0.0823) 

0.00259 

(0.043) 

0.0743 

(0.102) 

 

Seed 

 

0.3367 

(0.113) 

0.4771 

(0.120) 

0.3280 

(0.127) 

0.3594 

(0.161) 

0.3766 

(0.170) 

0.0631 

(0.027) 

0.3278 

(0.112) 
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. Table 5. Determinants of technical inefficiency
+
 [Ui~N

+
(0, σu); σui

2
 = exp(Ziδ)]  

 

 

Medium land
 

 

Lowland
  

 

Z variables:
 

(1)
 

(2)
 

(3)
 

(4)
 

(1)
 

(2)
 

(3)
 

(4)
 

               

               

Highest educat-

ional attainment 

in household
 

      -0.074 

(1.72)
 

* 
-0.068 

(1.65)
 

  * 
-0.083 

 (2.12)

** 
-0.336

 (2.31)

 ** 
-0.047 

(1.74)

* 
-0.43 

 (1.51)

 -0.057 

  (2.09)

** 
0.081 

(0.86)
 

 

            

Distance to 

nearest market
 

0.049 

(3.25)
 

** 
0.046 

  (3.45)
 

** 
0.042 

 (3.42)

** 
0.007

 (2.05)

 ** 
0.025 

 (2.06)

** 
0.026 

(2.04)

** 
0.022 

  (1.97)

** 
0.010 

(2.08)
 

 ** 

             

Age: head of 

household (HH)
 

-0.022  

(1.96)
 

** 
-0.020 

   (1.92)
 

*   -0.057

(2.52)

 ** 
-0.009 

(1.04)

   0.013 

(0.87)
 

 

             

Highest educat.  

x     Age of HH
 

      0.005

(1.98)

 *    -0.003 

(1.53)
 

 

              

Size of land 

holding
 

0.855  

(1.53)
 

       0.359 

(1.45)

     

              

% land in mid-

uplands
 

-0.912  

(1.59)
 

 -0.078 

(0.48)
 

     -0.210 

(0.70)

 0.171

(1.11)

    

              

% land in 

medium lands
 

-1.147  

(1.90)
 

* 
-0.292 

(1.44)
 

     -1.038 

  (2.01)

** 
-0.830 

(1.54)

    

              

% of in 

lowlands  

-0.799  

(1.34)
 

 0.080 

(0.48)
 

     -0.618 

  (2.19)

**  -0.283 

 (1.71)

*   

  
 

 
          

+
Estimated production frontier parameters are not reported here in order to conserve space, but are available   

  from the authors upon request.  
**

Statistically significant at 5% level. 
*
 Statistically significant at 10% level.  

 


